Clinical Investigations

Venography with Carbon Dioxide as a Contrast Agent

Kevin L. Sullivan, Joseph Bonn, Marcelle J. Shapiro, Geoffrey A. Gardiner
Department of Radiology, Suite 5390 G, Thomas Jefferson University Hospital/Jefferson Medical College, 111 South 11th Street, Philadelphia, PA 19107, USA

Abstract

Purpose: The purpose of this study was to evaluate the feasibility, safety, and potential role of carbon dioxide (CO_2) as a contrast agent for venography.

Methods: Consecutive patients with contraindications to iodinated contrast agents or with unsatisfactory iodinated contrast studies underwent CO_2 digital subtraction venography. The images were rated by three experienced angiographers. Image quality and complications were assessed.

Results: Over a 14-month period, 66 vein segments were studied in 21 patients. There was good correlation between experienced angiographers on CO_2 image quality ($R = 0.80$) and good agreement on diagnosis ($k = 0.62$). In 91% of the vein segments evaluated with CO_2 there was interobserver agreement on the diagnosis. Upper extremity veins were adequately imaged with CO_2 alone in all (6/6) patients with contraindications to iodinated contrast. Following suboptimal iodinated contrast studies in six patients, CO_2 produced significantly better quality upper extremity central vein images ($p < 0.05$). Pain following injection into peripheral veins was the only CO_2-related complication. Inferior vena cava (IVC) filters were successfully deployed with CO_2 alone in 78% (7/9) of patients; two required iodinated contrast.

Conclusion: Based upon initial experience, CO_2 venography can be recommended in patients with contraindications to iodinated contrast or unsatisfactory iodinated contrast studies.

Key words: Contrast media—Veins, extremities—Veins, innominate, subclavian—Vena cava filters—Venography, contrast—Catheters and catheterization

Allergic reactions and renal failure secondary to iodinated contrast (IC) have prompted the search for safer angiographic methods. CO_2 has been studied as a contrast agent for arteriography [1, 2]. We report here our initial experience with CO_2 used as a contrast agent for venography, as assessed by agreement among three experienced angiographers (raters) on image quality and diagnosis, and by the success and complication rates of venous interventions performed in the veins imaged with CO_2.

Materials and Methods

Venous imaging with CO_2 during a 14-month period was reviewed retrospectively. Informed consent was obtained prior to each study. CO_2 upper-extremity venography was performed in 12 patients: for IC allergy in three, renal failure in three, and poor quality IC venograms in six. CO_2 was used to study the inferior vena cava (IVC) in nine patients: prior to filter placement because of renal failure in seven patients, due to contrast allergy in one patient, and due to surgical traction in one patient (patients in surgical traction would normally be given nonionic contrast to minimize nausea and vomiting and potential aspiration due to an inability to turn the head). The indications for upper extremity venograms were as follows: prior to central venous access in four studies, predialysis graft placement in three studies, arm edema in two studies, pain in one study, and uncertain in two studies. Patients ranged in age from 34 to 83 years, with a mean of 60 ± 16 years. There were 8 males and 13 females. All studies were performed at our institution between April 1992 and May 1993.

CO_2 was injected by hand from a 60-ml syringe, and images were produced with digital subtraction. Upper extremity venograms were performed by injecting 50 ml of CO_2 into a forearm or hand vein in a dependent position. The arm was placed on a horizontal arm board slightly lower than the shoulders and thorax, or was permitted to hang freely over the edge of the angiography table. IVC studies were performed by injecting 50 ml of CO_2 into a 5 Fr pigtail catheter; the pigtail was placed at the confluence of the iliac veins. Prior to placement of an IVC filter, the IVC diameter was measured with the aid of a calibrated catheter (Cook Inc., Bloomington IN, USA), or by correlation with catheter diameter. Radiographs of the abdomen were performed following filter placement to confirm filter position. Radiographs of the chest were obtained following central venous catheter placement to assess catheter position.

The CO_2 and IC images evaluated by the three raters were those produced as part of routine care. The studies were presented in an-
dom sequence so that CO₂ and IC studies from the same patient were not viewed sequentially unless by chance. The names of the patients were obscured from the raters. The cephalic, axillary, subclavian, and innominate veins and the supra- and infrahepatic inferior caval vein were rated for quality. The raters were instructed to grade the veins from 0 (nonvisualized) to 6 (excellently visualized). Intraclass correlation (R₁) was used to measure the degree of agreement on quality among the three raters. The two-tailed, paired t-test was used to compare the quality ratings of veins evaluated with CO₂ vs IC.

The diagnoses of the CO₂ venograms from the reports of the radiologists performing the studies were reviewed. In addition, the raters classified the cephalic, axillary, subclavian, and axillary veins, and the supra- and infrahepatic inferior caval vein as normal or abnormal. Agreement among the three raters was evaluated with Cohen’s kappa (κ) [3].

Twelve upper-extremity venograms were performed with CO₂, 6 of which also utilized IC, producing 48 upper-extremity vein segments evaluated with CO₂ and 24 with IC. Nine IVCs were studied with CO₂, 2 of which also used IC, yielding 18 vein segments evaluated with CO₂ and 4 with IC. Thus, a total of 66 vein segments were evaluated with CO₂ and 26 with IC.

The following scale was used to evaluate R₁ and κ: < 0.2 = poor, 0.21–0.4 = fair, 0.41–0.60 = moderate, 0.61–0.80 = good to very good, 0.81–1.00 = very good to excellent correlation or agreement.

The success and complications of venous interventions following preprocedure CO₂ venography were evaluated by reviewing inpatient and outpatient charts.

Results

Quality and Diagnosis

For all images (CO₂ and IC), there was good interobserver correlation on the evaluation of image quality, with R₁ = 0.84, and good agreement on diagnosis, with κ = 0.64. For CO₂ images only, the correlation among raters on quality was only slightly worse, with R₁ = 0.80. There was interobserver agreement on diagnosis in 91% of vein segments evaluated with CO₂, with κ = 0.62.

The six CO₂ venograms performed for IC allergy or renal failure were considered of adequate quality by the radiologist performing the examination, and no IC was used. Among the six patients with poor quality IC upper-extremity venograms, the mean quality score and standard deviation in the subclavian vein were 1.5 ± 1.8 with IC, which was significantly lower than 4.6 ± 1.1 with CO₂ (p < 0.05). In the innominate vein, the mean score was 0.75 ± 1.4 with IC, which was significantly lower than 4.1 ± 1.9 with CO₂ (p < 0.05). There was no significant difference between CO₂ and IC in the cephalic or axillary veins.

Diagnoses from the radiologists performing the upper-extremity CO₂ venograms were as follows: four normal, two pericatheter innominate vein thromboses, two innominate vein stenoses, two innominate vein occlusions, one axillary vein stenosis, and one stenosis at the thoracic outlet associated with thoracic outlet syndrome (Figs. 1, 2).

Interventions

The outcome of seven studies in six patients who had CO₂ venograms prior to an intervention was evaluated. Four patients had central venous catheters placed. One patient had an innominate vein occlusion by CO₂ venography and had a central venous catheter placed on the contralateral side. In another patient, the central veins were normal, and a catheter was advanced into the superior vena cava. There was an innominate vein occlusion in a patient with well-developed collaterals, and a peripherally inserted central venous catheter was positioned in the subclavian vein. In another patient, an innominate vein stenosis was successfully traversed, permitting a peripheral port to be placed with the catheter tip in the superior vena cava. Two patients were evaluated prior to dialysis-access graft placement. Bilateral upper extremity venography was performed in one patient prior to a planned dialysis graft placement, but the graft was never placed. The veins were interpreted as normal in one upper extremity, but there was an innominate vein stenosis on the contralateral side. A second patient studied prior to dialysis access had a successfully placed graft in the arm interpreted as normal on CO₂ venography. Thus, all attempts to place central venous catheters or dialysis-access grafts were successful and without acute complications.

In seven of nine patients, an IVC filter was placed based upon the CO₂ study alone (Fig. 3). All seven were interpreted as normal by the radiologist performing the study. There were no complications related to filter placement in these patients. In two, IC was judged necessary. In one patient, opacification with CO₂ was too poor to evaluate the IVC. IC produced an IVC study of excellent quality in this patient, which was interpreted as normal. In another patient, an area of narrowing in the infrahepatic IVC was judged to be inadequately characterized with CO₂, and an IC study was performed. The filling defect appeared extrinsic on the CO₂ venogram, but intrinsic on the IC study. Intravascular ultrasound indicated that the filling defect was extrinsic. Based upon a history of malignancy, it probably represented lymphadenopathy.

In two patients, the diameter of the IVC determined by CO₂ could be compared to IC. In one patient, the corrected IVC diameter with IC was 17.3 mm, compared with 17 mm with CO₂. In the patient with poor opacification of the IVC with CO₂, the corrected diameter with CO₂ was 16 mm, compared with a corrected diameter of 26 mm with IC.

Complications

There were no major CO₂-related complications. Some patients did experience pain upon injection of CO₂ into
Fig. 1. A The right subclavian and innominate veins were poorly visualized with IC in this patient with thoracic outlet syndrome. B Abduction of the arm lead to even poorer opacification of these veins with IC. This radiograph was obtained 13.5 sec after contrast injection. Doppler ultrasound revealed slow axillary vein flow, especially with abduction of the arm. Subtraction artifact resulting from patient motion during the long image-acquisition sequence contributed to poor image quality. Slow flow probably diluted the IC, also contributing to the poor quality. C CO$_2$ venography demonstrated normal subclavian and innominate veins in the same patient with the arm abducted. The nonvisualized portions of the axillary and cephalic veins were normal on other images in this venogram. D CO$_2$ venography with the arm abducted revealed compression of the subclavian vein at the thoracic outlet (arrow). This image was obtained 2.5 sec after injection of CO$_2$.

Fig. 2. A CO$_2$-visualized reconstituted vessels. A nonvisualized right innominate vein (solid arrows) was confirmed to be occluded by retrograde flow into the ipsilateral internal jugular vein and opacification of the superior vena cava (hollow arrow) via collateral vessels. Note that the nonopacified areas in the axillary vein are due to segmentation of the contrast column. This was apparent on reviewing multiple sequential venogram images. B Collateral veins were imaged with CO$_2$. A left-arm injection of CO$_2$ opacified neck veins (double arrowhead), confirming occlusion of the left innominate, subclavian, and axillary veins. The right innominate vein was faintly opacified (arrow).
upper extremity veins, although this did not lead to termination of CO₂ use. There was no pain or sensation associated with CO₂ injection into the IVC. There were no signs or symptoms of compromise of the pulmonary circulation after CO₂ injection.

Discussion

Feasibility and Efficacy

There was good agreement among experienced radiologists evaluating the quality and diagnosis of CO₂ venograms, but such agreement is not sufficient to prove the accuracy of a contrast agent. However, it is a necessary condition for a contrast agent to be diagnostically useful. The best method of evaluating a diagnostic modality is by clinical or pathologic proof and follow-up data [4]. The ability to successfully and safely perform interventions based upon the information from CO₂ venograms is good evidence of the accuracy of this contrast agent.

In most patients with contraindications to IC, CO₂ permitted venous interventions to be performed without the use of IC. An initial attempt to image veins with CO₂ prior to interventions seems indicated in such patients. Some caution, however, is necessary when determining vessel diameter. There was good correlation of IVC diameter between CO₂ and IC in a single case where the inferior vena cavagram was of good quality. With poor opacification of the IVC by CO₂, vessel size was underestimated. This may be due to layering of the CO₂ along the nondependent surface of the vessel. With an inadequate volume of CO₂, the full diameter of the vessel may not be appreciated. Further evaluation is needed to assess the accuracy of CO₂ in measuring vessel diameter.

There are a number of diagnostic options for imaging veins. IC and CO₂ could not be directly compared because both agents were used in the same patients only when one produced an inadequate study. However, in patients with poor quality upper extremity IC venograms, CO₂ produced significantly better image quality in central veins. CO₂ can therefore be recommended in instances where there is poor opacification of the subclavian or innominate veins with IC. The improved opacification with CO₂ may be due to the ability of CO₂ to flow to a less dependent position independent of blood flow.

Poor quality IC images in this study may have been due in some cases to dilution of IC associated with slow flow. CO₂ traveled rapidly to the central veins, minimizing the dilution which probably occurred with IC.
The more rapid flow of CO2 may also be responsible for less subtraction artifact due to less patient motion during the study. This, too, probably contributed to the superior quality of some of the CO2 images compared with IC. One negative quality of CO2 as a contrast agent is segmentation of the contrast column. Review of multiple sequential images generally resolves any uncertainty.

Safety

Pain was experienced by some patients during CO2 injection. Gas compressed in the syringe prior to delivery could lead to rapid expansion of small peripheral veins, resulting in pain.

There have been reports of CO2 emboli leading to cardiopulmonary collapse during laparoscopic surgery with CO2 insufflation of the peritoneum [5–7]. One liter of CO2 was inadvertently injected into a vein rather than the peritoneum in one reported case, leading to a cardiac murmur without hemodynamic compromise [7]. In another case, all or part of 3.5 L of CO2 used to insufflate the peritoneum entered the venous system, leading to cardiovascular collapse [5]. However, in a series of 90 patients receiving intravenous injections of 50–60 ml of CO2 during cineangiocardiology to evaluate pericardial disease, none experienced complications; this series included one patient with an atrial septal defect [8]. Unlike our patients, though, these patients were placed in the left lateral decubitus position to capture CO2 in the right atrium. This maneuver probably permitted some CO2 to dissolve prior to entering the pulmonary artery. Information on the volume of intravenous CO2 needed to produce major complications is available from animal studies. Mice developed seizures after intravenous injection of 34.2 ml of CO2/kg of body weight [9]. A 70-kg person would require 2.4 L of intravenous CO2 to produce seizures at this dose.

None of the patients reported here experienced signs or symptoms of cardiovascular collapse. CO2 is soluble in water, which may partly explain the lack of symptoms. However, dissolution was not rapid enough to prevent CO2 from entering the pulmonary artery in the gaseous state. The pulmonary artery was visualized in some patients during upper extremity venography. The transient presence of CO2 in the pulmonary artery appeared to be well tolerated.

Additional experience will be needed to determine the role of CO2 in imaging veins of patients without contraindications to IC or suboptimal IC studies.

References