In our study, the anterior cingulate and orbito-frontal cortex activations probably represent neural activity responsible for inhibiting the participant’s voluntary attempt to move his left leg. Alternatively, these activations could represent the management of a mental dissonance produced when the suggestion of paralysis of the left limb conflicts with the explicit instruction to move it. Such an account would equally apply to hysterical people where the activations could reflect the management of a similarly generated internal conflict. While the first interpretation predicts that the recorded activations are specific to hypnotic or hysterical limb paralysis, the second would predict that the pattern of activation might also be seen with the same testing strategy, irrespective of the specific hysterical symptom or its hypnotically produced counterpart. Both interpretations, however, are consistent with the view that for motor paralysis, hypnotis and hysteria share similar mechanisms.

Although these are single-case comparisons, the anatomical proximity of the neural activations suggest that the psychological mechanisms which underlie hypnotic phenomena provide a versatile and testable model for understanding and treating conversion hysteria symptoms.

The Medical Research Council supports PWH, and the Wellcome Trust RSA and RSJ. The study was approved by the Joint Medical Ethics Committee of the National Hospital for Neurology and Neurosurgery and Institute of Neurology and permission to administer radioactivity was obtained from Administration on Radioactive Substances Advisory Committee, UK. We thank the participants for his co-operation.


School of Psychology, University of Cardiff, UK
(Prof P W Halligan md); Hypnosis Unit, Department of Psychology, University College London (D A Oakley mbch and Wellcome Department of Cognitive Neurology, Institute of Neurology, London (B Athwal mres; Prof R S J Frackowiak md)
Correspondence to: Prof Peter Halligan, Rivermead Rehabilitation Centre, Oxford OX1 4DX, UK
(e-mail: peter.halligan@spay.ox.ac.uk)

Carbon-dioxide portography: an expanding role?

J Vlachogiannacos, D Patch, A Watkins, J Tibballs, A R Burroughs

We describe a new and inexpensive technique of imaging the portal vein in patients with liver disease by use of carbon dioxide.

Porto-venous thrombosis may be the cause of portal hypertension, or may complicate portal hypertension in up to 15% of patients with cirrhosis at transplantation. The presence of portal vein thrombosis has major implications with respect to patient management. Liver transplantation is contraindicated when extensive thrombosis exists, and patients with variceal bleeding are not eligible for radiological shunts. Non-invasive techniques used in the assessment of portal-venous thrombosis include Doppler ultrasound, venous phase contrast enhanced computed...
tomography, and magnetic resonance angiography. However, these imaging modalities are not always definitive, and under these circumstances direct angiographic methods are still required, such as venous phase splanchic arteriography or transhepatic or transsplenic portography.

Hepatic venous catheterisation is the method of choice to assess portal pressure in patients with cirrhosis. During this procedure, contrast medium can be injected to obtain a retrograde portogram. Unfortunately, the use of iodine contrast medium rarely achieves adequate visualisation of the portal vein. Furthermore, adverse reactions to contrast material, including idiosyncratic reactions and contrast-induced nephropathy continue to occur in a few patients. Carbon dioxide has been used as an alternative to iodinated contrast material since the 1950s. Its advantages are numerous, and many of these are associated with the low viscosity (1/400) of carbon dioxide, allowing the use of finer (3F) catheters. The rapid clearing of extravasated carbon dioxide results in much less parenchymal staining, which is a drawback with iodine contrast medium. Carbon dioxide has a proven safety record and is inexpensive, at 1/1 000 the cost of iodine contrast medium.

Until recently, carbon dioxide angiography had focused on imaging arterial systems. We did a prospective assessment of carbon dioxide-wedged hepatic venography to investigate portal vein thrombosis. We examined 10 patients undergoing liver transplant work-up, in whom portal-vein thrombosis had been diagnosed by at least one other imaging modality. A control group of 30 patients was also examined. These patients were also undergoing liver transplant work-up, or a transjugular intrahepatic portosystemic shunt (TIPS) procedure. A 7F balloon occlusion catheter (Cordis Europa, Roden, Netherlands) was placed into a hepatic vein, via a common femoral or internal jugular vein approach, and wedged in position and the balloon inflated. In suspended respiration a rapid hand injection of 50 mL medical grade carbon dioxide was given. The carbon dioxide then refluxed retrogradely through the liver sinusoids to fill the portal-venous system (figure). Image capture was done in a standard fluoroscopy suite (Siemens, München, Germany), with a high frame rate of 6 frames per s.

Of 11 patients with equivocal imaging of the portal vein, six were confirmed to have portal-vein thrombosis by carbon dioxide portography. Five (45%) patients were found to have unequivocally patent portal veins. All five have since undergone successful liver transplantation. In the control group the portal vein was clearly patent in all patients. Only minor complications were seen. Transient non-specific chest discomfort occurred in four patients who had no other clinical signs and normal electrocardiograms and chest radiographs. These complications settled conservatively within 15 min. One patient had a suspected liver capsule leakage shown on carbon-dioxide portography, but no rupture was seen with conventional contrast medium injection, and there was no clinical sequence. No further intervention was necessary.

We conclude that carbon dioxide portography may be useful in examination of portal circulation. This technique has now become established as our definitive method to prove portal vein patency, when other methods give conflicting results. Carbon dioxide portography is also used in real time during TIPS procedures to guide the puncture of the portal vein. Our experience so far suggests that this technique is safe, well tolerated, and has a major impact on patient management. Carbon dioxide portography may be done at the time of transjugular liver biopsy, an hepatic wedge pressure may also be undertaken, providing fundamental histological, haemodynamic, and anatomical information for the clinician. In the era of single visit, day case medicine, we have termed this series of investigations the "one-stop liver shop".


Liver Transplantation and Hepatobiliary Unit (J Vlachogiannakis wo, D Patch, IE) and Department of Radiology (A K Burroughs, KJ) Royal Free Hospital, London NW3 2QG, UK

Correspondence to: Dr A K Burroughs