CO$_2$ DSA

Irvin F. Hawkins, Jr, M.D.
Professor of Radiology
Department of Radiology
University of Florida College of Medicine
Gainesville, Florida
CO₂ DSA
Irvin F. Hawkins, M.D.

At the University of Florida, we have used CO₂ in over 1800 patients and in 150 animals. If CO₂ is delivered in a nonexplosive controlled manner, it is extremely safe without causing renal failure or allergic reactions. However, it is imperative that one understands the physical properties of CO₂ in order to deliver it safely. We have found that this can be done successfully by using a dedicated injector. The dedicated injector is absolutely fail safe (no possibility of air contamination or delivering excessive volumes of CO₂), but it has not been approved for use in the United States. A plastic bag and check flow valve system (AngioDynamics, Glensfalls, NY, (518) 798-1215), which is approved only for fluid management, is commercially available and also makes CO₂ delivery easier and safer if used correctly.

The plastic bag system totally eliminates any possibility of delivering excessive volumes of CO₂, which could flood the right heart and cause vapor lock. Although the connections are glued, there is still the possibility that air could be aspirated if the syringes are improperly placed. The delivery syringe should be placed on the fitting farthest from the standard 3-way stopcock, which is connected to the catheter. Before the CO₂ is aspirated from the bag one should check the connection between the delivery system in the bag to be sure the connection is secure. The bag should be filled in a sterile fashion and placed in the sterile field. Connecting tubes, 3-way stopcocks, etc., should not be interposed since these connectors could cause aspiration of air. If the system is flushed properly and remains closed there is no possibility of air contamination or delivery of excessive volumes of CO₂. We strongly recommend with venous injections (TIPS, venograms and IVC) that you initially image the pulmonary artery with DSA since CO₂ will always trap in the most nondependent (highest) point when the patient is supine. If pure CO₂ is injected, it should be absorbed from the pulmonary artery within 15-20 seconds. If the CO₂ remains longer, there is either unusual anatomy resulting in trapping or air contamination has occurred. If this occurs, the patient’s right side should be elevated, which frees the CO₂ from the pulmonary artery permitting free flow of blood through the pulmonary artery.

Another extremely important aspect is delivery of pure CO₂. Some of the CO₂ cylinders that are available in most hospitals contain water particle matter, etc. One should use disposable tanks, which are individually tested for absolute purity. These cylinders can be obtained from Custom Medical Devices (Gainesville, Florida, (800) 273-8499) and are sold as an “ultra pure” source of CO₂.

We strongly recommend never connecting the CO₂ cylinder directly to the patient even when using multiple stopcocks or manifolds. If these valves are positioned incorrectly, there is a possibility of delivering massive amounts of CO₂ in a very short period of time. Also, if a simple syringe is used and the stopcocks are left open because of extreme diffusivity of CO₂ for as little as 10 minutes, 50% of the CO₂ is replaced by room air.

Another weak point has been in DSA imaging. Since CO₂ is much less dense than iodinated contrast, it is imperative to use the correct image exposure. If the images are gray, the equipment’s application personnel should be contacted to improve the contrast. We are currently obtaining images with a seven-year-old Toshiba system, which are comparable to iodinated contrast.

To improve filling of the distal circulation when stacking is not available, we inject a higher volume of CO₂ (10-20 cc/sec for 50-60 cc) after the intra-arterial injection of 100-150 ug nitroglycerin with the patient’s leg elevated. Before using CO₂, I strongly urge the operator to read the following handout entitled CO₂ workshop to assure that CO₂ is used in a safe and optimal manner.
CO₂ DSA
Irvin F. Hawkins, Jr, M.D.

Iodinated contrast angiography continues to be the gold standard for vascular imaging, although significant advances in ultrasound, Computed Tomography (CT) and Magnetic Resonance (MR) imaging may supplement, or even replace contrast angiography in the future. Angiography with iodinated contrast is the imaging modality of choice for performing interventional vascular procedures, and frequently is used for nonvascular intervention. The newer nonionic contrast agents have demonstrated a lower overall complication rate; however, renal failure and occasionally fatalities still occur [1].

Carbon dioxide (CO₂) does not cause renal failure or allergic reactions. Because of its “low density,” adequate imaging was not feasible until the development of Digital Subtraction Angiography (DSA). DSA equipment now produces images comparable to iodinated contrast. Moreover, CO₂ also occasionally provides information that cannot be obtained with iodinated contrast. Because of CO₂’s buoyancy and low viscosity: (1) collateral arteries are better demonstrated [2,3]; (2) arteriovenous shunting can be observed in tumors and arteriovenous (AV) malformations [2-4]; (3) tumors that appear avascular with iodinated contrast may demonstrate vascularity with CO₂ [2,3]; (4) minute amounts of arterial bleeding can be visualized [5]; and (5) the portal vein can be consistently visualized with either wedge or parenchymal injections of CO₂ [6,7].

At our institution, CO₂ has become invaluable in interventional procedures, since unlimited volumes of CO₂ can be injected for long, complex procedures and its low viscosity permits injection between a guidewire and a catheter, obviating the need to remove the guidewire for test injections.

History

CO₂ was first used in radiology to demonstrate retroperitoneal structures in 1914 [8]. It was used intravenously in the 1950's for the detection of pericardial effusion [9-11]. Bendib reported 1600 cases in which 100-200 cc of CO₂ were injected in an antecubital vein for the detection of pericardial effusion without complications [12]. In the 1960's, Hipona introduced CO₂ for the evaluation of the inferior vena cava (IVC) as well as the hepatic veins [13], and Hallin used it for coronary endarterectomy [14]; it was also injected into the fetal peritoneal cavity for intrauterine transfusions [15].

In 1971, we began using CO₂ as an arterial contrast agent with cut-film subtraction techniques, delivering it with a hand syringe. The photographic subtraction techniques were time-consuming and, in general, suboptimal; yet, occasionally diagnostic studies were obtained. With the acquisition of DSA in 1980, CO₂ imaging became much more reliable [16]. To date, we have used CO₂ in over 140 laboratory animals and in over 1400 patients, with diagnostic images being obtained in the majority of cases. Initially, our indications for CO₂ were renal failure and allergy. Currently, we are utilizing CO₂ in any area where iodinated contrast material is injected, with the exception of the arterial cerebral circulation.

Similarly, CO₂ “bubbles” have been used since the early 1970's for ultrasonic vascular imaging [17]. In 1978, Lantz reported using CO₂ intra-arterially for the therapy of peripheral vascular disease [18]. We have used CO₂ for “clear” angiographic viewing without the danger of fluid overload [2,19]. CO₂ has been routinely used in laparoscopy for many years [20].

Presently, several dedicated injectors have been developed [3,21,22], and a hand delivery system using a plastic bag reservoir is also commercially available [23].
Safety

Before CO₂ was used in the 1950's for pericardial effusion, multiple animal studies were obtained, which demonstrated only minimal transient changes in PCO₂, PO₂, blood pH, etc., even with large doses [10,24,25].

Because of the recent interest in CO₂ venography, we examined 20 swine while in the supine position, injecting incrementally increasing doses of CO₂ (from 0.2 cc/kg up to 6.4 cc/kg) [26]. Imaging was obtained with DSA, and PO₂, PCO₂, blood pH, SaO₂, central, pulmonary and systemic pressures were obtained at 1, 3, 5, 10 minutes after increasing doses of CO₂. The animals were examined in the supine and both right and left lateral decubitus positions. At .8 cc/kg (equivalent of 80 cc/average size patient), no significant changes in any of the parameters were noted in any position. There was a profound increase in pulmonary artery pressure and decrease in systolic pressure when a very large dose (6.4 cc/kg) was delivered, as would be expected. (All recovered from this massive dose, except one animal.) The study demonstrated that the safest position is the left lateral decubitus; however, the animal could tolerate moderate I.V. doses in any position.

To determine if pure CO₂ is being delivered, the animals were placed in the left lateral decubitus position and 5 cc of CO₂ were delivered, which disappeared from the right atrium in 1-2 minutes. When room air was injected, the air remained for as long as 10 minutes. We recommend (because of two cases where room air was inadvertently injected) fluoroscopy of the pulmonary artery (PA) after the first I.V. injection, since CO₂ “traps” in the anterior PA in the supine position. If the gas remains in the pulmonary artery for over 20-30 seconds, the patient should be placed in the left lateral decubitus position and the CO₂ delivery system checked for any possible air contamination.

We injected very large volumes of CO₂ into the aortic arch, carotids and vertebral arteries of canines, with head elevation of approximately 45° [15]. We noted no hemodynamic or neurological changes. Likewise, Shifrin [27] with canines, and Bettman with rabbits also used cerebral injections of CO₂ without evidence of significant neurological, hemodynamic, or histological changes. Similarly, Plich has used CO₂ in hundreds of patients with congenital heart disease, etc., without complications (personal communication). Our earlier experience in rats showed that selective cerebral injections of CO₂ caused strokes and disruption of the blood-brain barrier [28]. However, it is uncertain whether this was the result of excessive volume of gas (0.5-1.5 cc), explosive delivery, or air contamination. Recently, we have found that when the gas is transferred in a syringe from the CO₂ cylinder to the gas chromatography analysis unit that the sample is always contaminated with 1-2 cc of room air. Since a closed system was not used, the rats definitely received a significant amount of room air.

We feel strongly that the cerebral circulation should not be exposed to CO₂ until primate studies verify the absence of neurotoxicity. Since the rat study demonstrated neurotoxicity, we examined 10 dogs after 100 cc of CO₂ were injected into the aorta in the prone position to evaluate for possible spinal cord toxicity. No neurological deficits were noted by a canine neurologist.

Potential renal toxicity was evaluated in 14 canines in which selective injection of large amounts of CO₂ were made every two minutes with a dedicated injector [29]. Nuclear medicine studies were obtained pre- and post-CO₂ injections and histology (light, electron and scanning electron microscopy (SEM)) was obtained four days after CO₂ was injected. There was a transient decrease in arterial flow, but no functional changes were noted. SEM of the endothelium adjacent to the cathether tip was completely normal. There were no significant histological changes with the exception of one animal where the minimal acute tubular necrosis was noted. In that animal, the kidney was in a nondependent position, directly above the catheter, predisposed for CO₂ trapping and possible ischemia. In our recent unpublished
retrospective study of arteriography in 25 transplanted and 20 reimplanted renal arteries, no persistent increase in creatinine occurred with CO₂.

For renal transplant angiography, because of the anterior position of renal transplants, the amount of CO₂ should be limited and more time allowed between injections to permit absorption of potentially trapped CO₂.

The buoyancy of CO₂ also caused some concern for possible hepatic toxicity. A rabbit study demonstrated no significant hepatic toxicity [30].

Clearly, the most dangerous aspect of CO₂ imaging is the inadvertent delivery of massive amounts. After I.V. injections of 1000-2000 cc, three dogs promptly died apparently secondary to displacement of the blood from the right artery, vapor lock, and ischemia [3]. Aortography in ten dogs with injections of 50-100 cc of CO₂ demonstrated renal veins and IVC, which suggested either pre-capillary shunting, or flow through the capillary bed [3]. Therefore, it is important not to inject excessive volumes in either arteries and veins, since in both cases the right heart can be flooded, resulting in the patient’s demise.

Unique Chemical and Physical Properties of CO₂

The high solubility of CO₂ (20 X more than O₂) permits safe intravascular injections. Carbonic anhydrase catalyzes CO₂ and H₂O to form carbonic acid, which rapidly dissociates into the H⁺ and bicarbonate (H⁺ + HCO₃⁻). Bicarbonate moves into the plasma where it quickly dissolves. The reverse occurs to release CO₂ gas into the alveoli [31]. It is not known if CO₂ (in the gaseous phase) enters the pulmonary capillaries during venous injections; however, if the partial pressure of the gas is high on the capillary side of the alveolus, the extremely diffusible CO₂ gas should very rapidly cross the membrane into the alveolus. We have performed large IVC injections in rats and pigs and selective pulmonary artery injections (ongoing study), which showed no gas in the pulmonary vein of a left atrium, suggesting that massive volumes (equivalent to 600 cc in man) of CO₂ are eliminated by the lungs in one pass.

Even though CO₂ DSA images are frequently identical to those obtained with iodinated contrast, the physical properties obviously are quite different. Iodinated contrast medium mixes with blood, whereas CO₂ displaces blood. For iodinated contrast, the density of the image can be improved by either increasing the injection rate or the concentration of iodine. The contrast is then eliminated from the vascular system by glomerular filtration. CO₂ is imaged by displacing the blood and the differential density of the gas compared to the surrounding tissues is recorded with DSA. If the blood is totally displaced, additional CO₂ will not improve the imaging, but will simply reflux into unwanted areas. When blood is totally displaced by CO₂, the image can only be improved by DSA enhancement.

The dilution of iodinated contrast by collateral flow frequently renders nondiagnostic studies. CO₂, on the contrary, forms small gas “packets,” which cannot be diluted by collateral flow, permitting accurate imaging of the distal circulation if these “packets” are added together with DSA software (“stacking”).
Buoyancy

The extreme buoyancy of CO₂ has both advantages and disadvantages. Position of the patient will greatly affect filling of various organs. Using the analogy of injecting helium into a hollow tree: (1) if the tree is inverted the distal branches will not fill; (2) if the tree is lying on its side the upper or nondependent branches will readily fill; or (3) if the tree is in a normal position, all the distal branches will easily fill. During CO₂ injections elevating the area of interest always improves filling, and occasionally vessels that are not visualized with iodinated contrast are easily filled with CO₂. In conditions of slow flow (especially in the lower extremities), we elevate the extremities 15-20° with the distal vessels filling the majority of the time. If there is good arterial flow, it is not absolutely necessary to elevate the area of interest. In a retrospective study of 30 patients with significant atherosclerotic disease, we compared filling of the popliteal artery and the trifurcation with the legs flat and elevated [3]. The majority of these studies below the knee were nondiagnostic with the patients flat, and all were diagnostic with the feet elevated. Injecting CO₂ in a pulsatile flow model, Song [32] has shown that the larger vessels fill much better with elevations of 15°.

Buoyancy is also important in vessels that originate from the aorta. The anterior vessels (celiac, superior mesenteric artery (SMA) and inferior mesenteric artery (IMA)) always fill well, even with minimal amounts of CO₂ (10 cc with cross-table DSA imaging). The renal arteries are more difficult to fill since they course in a posterior (dependent) direction. The nephrogram is not normally seen since the buoyancy of CO₂ inhibits distal filling. In our animal nephrotoxicity study [29], we obtained a good nephrogram in a single dog when the kidney was vertically oriented. It has been speculated that when filling the distal vessels, CO₂ will not reach the capillary level because of its rapid dissolution [4]. We have noted that if an adequate amount of CO₂ is injected, the majority of the time the distal vessels are well filled. The low density of CO₂ does not produce as dense a stain as iodinated contrast, however, occasionally a faint capillary phase is seen. The left renal artery tends to originate more posteriorly, which frequently requires elevation of the left side. The renal artery like the celiac, SMA and IMA can be seen more reliably if the left side is elevated and imaged with cross-table lateral DSA. If either renal artery is not adequately filled, selective injections are performed.

Although the buoyancy improves filling in many situations, it can also be a disadvantage. For example, if an inadequate amount of aortic CO₂ is delivered, it will layer anteriorly and the lumbar arteries will not be visualized. It can also potentially trap in nondependent areas, such as the celiac, SMA, IMA, and distal extremities (if they are elevated), etc. Likewise, during venous injections in the supine position, CO₂ has the property to trap in the anteriorly located pulmonary artery. Fortunately, CO₂ is safe since in most cases, if it does trap, it dissolves rapidly (usually within 10-20 sec). However, if injections are made very rapidly not allowing time for dissolution, or the CO₂ traps in a large cavity (abdominal aortic aneurysm (AAA)), a “vapor lock” condition may ensue, which could possibly cause ischemia. We have experienced four potentially serious complications, which, we believe, were all secondary to trapping [33]. In a large abdominal aneurysm, ten injections of 200 cc of CO₂ resulted in severe diarrhea of eight hours' duration. It was speculated that the CO₂ trapped in the distal aorta, and since the IMA is nondependent, the colon was ischemic during the duration of the CO₂ injections. In two additional patients, a CT obtained 24 hours after the CO₂ study demonstrated a small amount of gas in the anterior convexity of the aneurysm. Since pure CO₂ is believed to always dissolve in 15-20 sec, we speculated that because of differential partial pressures, the oxygen and nitrogen in the blood diffuses into the CO₂ bubble. The CO₂ dissolves, leaving the less soluble oxygen and nitrogen. We would suggest that in any area where CO₂ traps that either the position should be changed to free the CO₂ or several minutes should elapse between injections to permit absorption. Fortunately, we have experienced no other complications related to trapping of CO₂ in abdominal aneurysms, etc.
Three transient cardiac arrests were also believed to be secondary to gas trapping. An inadvertent injection of a massive amount of CO₂ flooded the right heart and resulted in a transient vapor lock with bradycardia, hypotension and elevated ST segments [33]. When the patient’s position was changed from the supine to the left lateral decubitus, the parameters normalized. There were two other cases, in these instances using hand injection, where 20 cc of room air was believed to be inadvertently injected, resulting in a vapor lock in the right heart. Again, both of these patients recovered when they were placed in the left lateral decubitus position. We initially speculated that the CO₂ syringe might have been contaminated with room air. Cho [34] recently has shown that if the stopcock of a 20 cc syringe filled with CO₂ inadvertently remains open for one hour, 68% of the volume is replaced by room air. This occurs secondary to the extreme diffusion of CO₂ and the difference in concentration (99.5%) of CO₂ in the syringe compared to .03% CO₂ in room air. The air rushes into the open stopcock at a rate of .2 cc/sec. Because of this extremely rapid gas exchange, a gas “leak proof” closed system must be employed to prevent this potentially lethal complication.

Delivery Systems

Although CO₂ has been used in radiology in the vascular systems since the early 1950’s, difficulty in delivery has limited the number of investigators. The CO₂ is supplied in cast iron cylinders. The gas in the CO₂ cylinders are compressed to very high pressures (actually in a liquid state), many of which are several decades old and may contain water, rust, methane, etc. We strongly recommend using a disposable CO₂ cylinder which has been individually examined for purity (Custom Medical Devices; Gainesville, FL). The pressure is reduced with a gas regulator. If the regulator malfunctions, extreme volumes of CO₂ can be delivered very quickly. If a syringe is filled with the cylinder and regulator, the loaded volume is difficult to determine. If a 100 cc syringe is filled from the tank with the regulator set at 44.1 mmHg, the syringe will contain 400 cc instead of 100 cc. The regulator’s indicator shows pressure above 1 atmosphere (14.7 mmHg), therefore, 14.7 + 44.1 = 4 atmospheres; 4 x 100 cc = 400 cc. If the stopcock is opened to the atmosphere, the excess amount of CO₂ will escape and equilibrate to one atmosphere; thus, the syringe will contain only 100 cc.

By bench testing, we found that when delivering 100 cc through a 4Fr catheter over 4 seconds, 95% of the CO₂ gas is delivered in the last one-half second [3]. If the syringe is filled with the regulator set at 44.1 psi, the syringe now contains 400 cc and is delivered “explosively” at a rate of over 760 cc/sec. We believe that the mechanism for explosive delivery is compression of CO₂ in the catheter and syringe against the resistance generated by clearing the more viscous saline or blood from the catheter. At the instant the liquid exists the catheter the compressed gas rapidly expands, resulting in inconsistent “explosive” delivery (increased discomfort and potential reflux into unwanted area). After the liquid is removed, the gas flows relatively unimpeded through the catheter. Therefore, clearing the catheter of fluid before the bolus is injected will result in a controlled nonexplosive delivery.

Initially, we delivered CO₂ by hand with a 50 cc syringe. We later utilized a standard mechanical angiographic injector, which proved to be more consistent, but still resulted in explosive delivery. During the past 15 years, we designed four different hand-held and dedicated computer injectors, which were safer, but still resulted in inconsistent, “explosive” delivery. Other injectors have been developed in Europe [21,22]. A dedicated computer-controlled CO₂ injector which safely delivers CO₂ in a controlled, nonexplosive manner is now commercially available in most countries other than the United States (because of FDA constraints) (AngioDynamics; Glens Falls, NY).
Dedicated Injector

The latest commercially available injector purges the saline from the catheter before the bolus of the CO₂ is injected. It also incorporates four internal transducers and one external transducer, which aborts the injection if there are any high or low pressure events and prevents delivery of excessive volumes. This is a fail-safe closed system with special rubber o-ring fittings which eliminates any possibility of air contamination. The injector has a high-speed valve, which injects more CO₂ during systole and less during diastole to deliver CO₂ in a more uniform manner. It also includes an automated closed saline system with a submicron filter and multiple one-way check valves to prevent reflux of blood into the system. The saline flushing stops during CO₂ injection and automatically resumes at the termination of injection. The in-line transducer provides constant intravascular pressure monitor and ensures accurate delivery during systole and diastole. The injection rates and total volumes are programmed into the computer, which will deliver the precise volume of CO₂ for each specific catheter. A mass flow meter measures the flow rates and volumes and displays them on a liquid crystal screen at the termination of each injector. The injector has been used in over 1000 cases in the United States, Europe and Australia.

Since the dedicated injector is not approved by the Food and Drug Administration in the United States, we attempted to develop a hand delivery system, which incorporated principles learned from the dedicated injector.

A near fatal complication occurred during a hand injection when at least 1000 cc of CO₂ were inadvertently delivered into the venous system when the CO₂ cylinder was connected to the catheter. Fortunately, because of the extreme solubility of the gas, the patient recovered uneventfully. However, this prompted the development of a plastic bag which is coupled to a fluid management system (AngioDynamics; Glens Falls, NY) with multiple one-way “check” valves.

Plastic Bag Hand Delivery System

There are two key points to the hand delivery system, which results in safe and reliably delivery. One is the use of a flaccid plastic bag as a CO₂ reservoir and a delivery system with multiple one-way check valves, which permits rapid delivery and the ability to clear the catheter of blood or saline before the injection.

A 1500 cc plastic bag with a single connecting tube and a one-way stopcock is filled with pure CO₂ from a cylinder. The bag is equipped with only a single port, which prevents any possibility of inadvertently connecting the CO₂ cylinder directly to the patient. The CO₂ bag is filled from the tank and the gas is filled and refilled three times to “washout” any residual room air.

The second component is a delivery system marketed as a fluid-management system (AngioDynamics, Glens Falls, NY), which consists of a high-pressure three-way stopcock, a one-way “T” check flow valve, 100 cm high-pressure connecting tubing and a second one-way check flow valve. All of the components are glued together to prevent inadvertent aspiration of room air.

Prior to attaching the system to the patient’s catheter, the system should be flushed three to four times after the plastic bag is connected to the delivery system. Usually, a 50 cc syringe is used for the bolus injections and a 3 cc syringe is used on the check flow fitting adjacent to the standard three-way stopcock to purge the saline or blood from the catheter. Both of these syringes can be readily purged by simply aspirating and injecting approximately four to five times. After the system is totally purged, the three-way stopcock is connected to the catheter. The three-way stopcock is used to clear the catheter of any air bubbles or blood, etc. The three-way stopcock is closed to the patient, and this stopcock is completely cleared of any residual air by flushing with the side arm open.
After the catheter is connected to the delivery system, the 3 cc syringe is filled simply by retracting the plunger. 3 cc of CO$_2$ are forcefully injected through the catheter and the one-way stopcock attached to the 3 cc syringe is closed. Subsequently, no stopcock manipulation is required because of the one-way check flow valves. After the catheter is cleared of blood or saline with the 3 cc injection, the check flow valve prevents reflux of blood into the catheter. The delivery syringe is filled to the desired amount and CO$_2$ is injected in a nonexplosive manner as desired. For repeat injections, the CO$_2$ is aspirated from the plastic bag, which incrementally collapses. After the catheter is cleared, if less than 3-5 minutes elapses between injections the catheter does not have to be repurged of blood. **We strongly recommend that the connection between the plastic bag and the delivery syringe check flow fitting should be inspected prior to each aspiration.** If the system is correctly assembled, this is the only point where there is a possibility of aspirating room air.

Only the desired amount of CO$_2$ is delivered since the flaccid plastic bag maintains the CO$_2$ volume at atmospheric pressure. Before the CO$_2$ system is assembled, one should be absolutely sure that all ports are closed to prevent air aspiration. The delivery syringe should be connected to the fitting the farthest from the standard three-way stopcock, which is used to connect to the angiographic catheter during standard angiographic procedures. This is easy to remember since the three-way stopcock is the only standard valve, which can be connected to the catheter, and the delivery syringe should also be placed farthest from the catheter to reduce the amount of radiation to the operator. The CO$_2$ source must be connected as close to the delivery syringe as possible. The 3 cc purge syringe must be connected to the port closest to the catheter. Various operators have used similar systems with multiple valves and connecting tubes; however, there is always a possibility that a port is not closed or inadvertently opened, which could result in aspiration of room air. Recently at two different institutions additional stopcocks were added to the system which resulted in inadvertent air injection will bowel necrosis. No additional fittings are required. If the plastic bag is filled it contains over 2-3 x the volume needed for any procedure. **Never! Never! add additional stopcocks, connecting tube etc, since none of these fitting are designed for gases and air could be aspirated into the delivery syringe.**

In one TIPS patient, we used the purge port as a port for the delivery syringe, and the delivery port was left open to room air. During attempted aspiration from the bag, room air was inadvertently aspirated through the open port. If the system is correctly connected and the fitting between the bag and the delivery syringe is secured, there is no possibility whatsoever of inadvertently delivering room air or delivering excessive volumes of CO$_2$. As a precaution during venous injections, as a method to ascertain whether room air is present, we image the pulmonary artery with DSA while the patient is in the prone position. If pure CO$_2$ is present, the gas will disappear from the pulmonary artery in 15-20 seconds. Room air will remain at least five minutes. In the event that the air is inadvertently injected, the patient is placed in the left lateral decubitus position, that is, the right side up which allows blood to flow unimpeded under the CO$_2$ trapped in the right atrium and right ventricle into the pulmonary artery. If air is inadvertently injected in peripheral arteries ischemia can occur; however, if large amounts of air are injected into the right heart there is a possibility of vapor lock and cardiac arrest.

Use of Small Catheters

Although we have used 3Fr and 4Fr catheters for over 20 years with iodinated contrast, the extremely low viscosity of CO$_2$ permits easy delivery at very high flow rates and volumes. Flow rates of over 75 cc/sec are possible with 3Fr catheters, or fine needles. CO$_2$ can be used with any catheter, however, the “halo” catheter (AngioDynamics; Glens Falls, NY) (a spiral configuration catheter with side holes placed along the inner curvature of the spiral) will deliver CO$_2$ as a bolus without “breakup” into segments [32]. A pigtail catheter tends to cause CO$_2$ to “breakup” into more segments. We frequently use a 4Fr SOS Omni (AngioDynamics; Glens Falls, NY), which functions as a pigtail catheter; however, it has
the advantage of easily catheterizing the contralateral iliac artery.

Although the halo catheter seems to deliver CO₂ more homogeneously, it was developed to reduce possible intimal damage. We demonstrated the safety of CO₂ jets by comparing iodinated contrast to CO₂ in a delicate gelatin block flow model. CO₂ produced no damage at an injection rate of 200 cc/sec, whereas iodinated contrast caused severe damage to the model at 12 cc/sec with a pigtail catheter. Although CO₂ injections are extremely safe, in the event that the catheter would inadvertently become wedged, we prefer placing a single small side hole near the tip of the catheter to serve as a safety valve.

Suggested Injection Procedures and Rates for Safe and Reliable Delivery

1. Use a closed system; however, never attach the CO₂ cylinder to the catheter.

2. Initially inject small volumes of CO₂. Nonexplosive delivery produces little or no sensation; therefore, less motion. Increase volume appropriately according to size of vessel.

3. Wait 2-3 minutes between injections to allow potentially trapped CO₂ to dissolve.

4. If the area of interest is located below the injection site (lower), position area of interest above catheter (i.e., renals) (elevate right and left flank). In poor flow condition elevate feet 10-15°.

5. Use a catheter with at least one sidehole for safety.

For aortogram and runoff studies:

1. Perform runoff first to allow patient to become acclimated to CO₂ injection.

2. Inject 20-40 cc/sec for total of 20-40 cc with catheter above aortic bifurcation.

 a. Film pelvis, both thighs, knees, lower legs and feet with above flow rates. Lower legs and feet may require higher volumes (60 cc). Also, if stacking is not available longer injections cause less “breakup” of CO₂.

 b. Aortogram requires higher injection rates to displace blood (100-120 cc/sec for a total of 50-60 cc). Lower rates and volume (60 cc/sec for a total of 30-40 cc) may be adequate and cause less sensation and nausea.

 c. If filling below the knee is suboptimal, do selective common femoral artery injections: maneuver catheter into contralateral femoral artery (“over-the-hill”); retract catheter in ipsilateral common femoral artery; or place a 3Fr or 4Fr catheter in contralateral common femoral artery. Elevate extremity 10-15° and inject 100-150 μg of nitroglycerin intra-arterially before injection CO₂; selective injections of celiac, renal, SMA 10-20 cc/sec for a total of 10-50 cc/sec.

Venous Injections

Injection rates for superior vena cava and inferior vena cava are 40-80 cc/sec for a total of 20-60 cc. For peripheral veins inject 5-10 cc/sec for a total of 20-40 cc. Always image the pulmonary artery immediately after the first injection to rule out air contamination. Pure CO₂ should dissolve in 15-30 seconds.
CO$_2$ Imaging

Although imaging was adequate with the very first commercially available DSA unit (Philips DVI 1, 256 x 512 matrix), the newer 1024 x 1024 units produce images with considerably improved resolution. Unfortunately, there has been little or no effort directed toward optimizing imaging for this low density contrast. Presently, the equipment is fine-tuned for only iodinated contrast. Recently, when using a Toshiba unit, we have increased the exposure time from 10 milliseconds to 60 milliseconds and have noted a considerable improvement in contrast. Many of the images (including small distal vessels) are comparable with iodinated contrast.

In the past, if a segment of CO$_2$ demonstrated poor contrast, it was felt that an inadequate amount of CO$_2$ was delivered. Since CO$_2$ does not mix with blood and will not become diluted, if a small bubble of CO$_2$ is poorly seen it is not due to poor delivery, but poor imaging. We would recommend that if the imaging is poor, the manufacturer’s applications person should be contacted and modify the exposure times, acquisition maps, etc.

Another significant advance has been the addition of the “stacking” program [3]. This is similar to maximum opacification; however, rather than adding the positive pixels, multiple negative pixels are integrated into a single-composite image. If the CO$_2$ “fragments” or a small amount of CO$_2$ is delivered, the segments can be added together to produce a single diagnostic film. This has reduced injection rates in the lower extremities from 30 cc/sec for a total of 90 cc/sec to as low as 5-10 cc/sec for a total of 10-20 cc/sec. Injecting small amounts of CO$_2$ nonexplosively produces no sensation; thus, decreasing the motion difficulties inherent to DSA.

Diagnostic Efficacy of CO$_2$ DSA

Multiple publications have demonstrated the diagnostic efficacy of CO$_2$ [4-7, 35-43]. Since the physical properties of CO$_2$ gas are quite different from liquid contrast, a learning curve is usually required for proper interpretation.

If the blood is totally displaced from the artery and imaging is optimal (no motion, etc.), interpretation of anatomy and lesions is identical to iodinated contrast.

If the vessel is only partially filled (top only) a mild stenosis may appear high-grade and a lesion or a vessel originating from the dependent portion may be completely missed. This occurs primarily in large vessels such as the aorta or IVC. Several authors report overestimation of stenosis [6, 39]. If an inadequate amount of CO$_2$ is injected, overestimation of the stenosis does occur. However, we believe that when CO$_2$ is properly delivered it may detect more lesions than iodinated contrast.

In a larger vessel, or even in medium size vessels when an inadequate amount of CO$_2$ is delivered, cross-table lateral or oblique imaging should be obtained, the position of the patient should be changed to fill another segment of the artery, and the catheter should be placed as close as possible to the lesion to improve the filling.

Our surgeons (independent of radiology) retrospectively reviewed 115 patients who underwent CO$_2$ angiography for evaluation of peripheral vascular disease [41]. CO$_2$ alone produced correct diagnoses in 92% of the cases. CO$_2$ plus a small amount of iodinated contrast resulted in the correct diagnosis in 100% of cases. Eighty-eight of these patients had either allergy or increased creatinine. No increase in creatinine was noted in any of the patients who presented with renal insufficiency. At that time, the failures in the study were primarily due to suboptimal filling below the trifurcation. With improvements in imaging and

9
delivery and the addition of vasodilators (100-150 μg nitroglycerin), presently the feet can be imaged in over 95% of the patients. We have also noted that because of its low viscosity and buoyancy, CO₂ frequently will fill distal vessels when iodinated contrast material does not. In cases with Leriche's syndrome or similar occlusions, iodinated contrast may be diluted by collateral flow and result in nondiagnostic images. Since CO₂ is nonviscous and does not mix with blood, it easily crosses small collaterals, fills distal vessels without dilution, and by using “stacking” diagnostic images can be obtained.

If one area of the CO₂ study fails due to patient motion or buoyancy of the gas, etc., small amounts of iodinated contrast can be used to supplement the diagnosis. CO₂ and iodinated contrast should be complementary, since they each have different properties. If only a small amount of iodinated contrast is required in patients with renal failure, the risk of renal damage is only slightly increased.

Detection of Arterial Bleeding

Recently, detection of arterial bleeding has become a very important additional indication for CO₂ [5,44-46]. In a relatively large number of patients, CO₂ has dramatically demonstrated bleeding sites not seen with iodinated contrast. Hashimoto has used CO₂ in 62 patients, demonstrating the bleeding site in 52% of cases with CO₂ and only 20% with iodinated contrast material [45]. It is believed that the mechanism for this improved visualization is primarily due to the low viscosity, which permits the CO₂ to readily flow through the small tear in an artery as compared to the very viscous iodinated contrast. In addition, CO₂ is compressed in the artery and when it flows into the lower pressure periarterial location, the CO₂ expands. Since the CO₂ is not diluted by blood in the extravasated area, it is more readily imaged as compared to iodinated contrast, which may be diluted to the extent that it is not imaged. The lack of capillary staining with CO₂ is extremely important in organs that densely stain with iodinated contrast (such as stomach, spleen, kidneys, etc.), since the stain may obscure the bleeding site.

We also recommend using both CO₂ and iodinated contrast in trauma patients, even though the iodinated contrast demonstrates a bleeding site. In several cases we have seen no bleeding with iodinated contrast and multiple bleeding sites with CO₂. If “missed” bleeding arteries are not embolized, and life-threatening bleeding may recur. Also, after the bleeding site is identified, CO₂ is helpful in adequately demonstrating the anatomy if small tracker type catheters are used. We and Hashimoto [45,46] have noted that after embolization with coils and gelfoam, etc., the bleeding site may still be seen with CO₂, but not with iodinated contrast. After suspected “complete” embolization, we usually wait 20-30 minutes and repeat the CO₂ injection. Usually with more clotting, CO₂ will not flow through the occluded artery.

Low Viscosity Improving AV Shunting

In cases of hypernephromas and hepatomas, we have seen immediate shunting through the tumor into the renal or portal veins, respectively. In hypernephromas, we frequently see immediate filling of the IVC, which is helpful in evaluating tumor thrombus invading the IVC. Tenaka [4] originally described shunting into the portal veins of patients with liver tumors. In 1994, Miyazono [43] reported 12 cases with good visualization of the portal vein, injecting 25-35 ml of CO₂ into the hepatic artery with a 3Fr microcatheter. It is of interest that only eight patients had hepatocellular carcinoma, two had metastatic disease, one gallbladder cancer and another cirrhosis. The authors felt that the shunting occurred through the anastomosis between the hepatic artery and portal vein known as the peribiliary or periportal plexus, which has been demonstrated in rats. We have seen shunting into the portal vein with tumors; however, we have only occasionally seen the portal vein in patients without hepatocellular carcinoma. With arterial injection of CO₂, visualization of the portal vein may occur more often with a more “explosive type” delivery.

We have reliably imaged the portal vein with intraparenchymal injections of CO₂ (usually 20 cc in
one-half second) for (1) TIPS procedure [7]; (2) embolization of the portal vein; (3) portal vein sampling; or (4) as an adjunct to percutaneous cholangiography. We have also visualized the portal vein by advancing a 25-gauge needle into the spleen and injecting 20 cc of CO₂ [47].

Multiple AV fistulas secondary to trauma and occasional shunting in atherosclerotic peripheral vascular disease, have been noted that were not seen with iodinated contrast. Maynard (personal communication) has seen AV shunting in many patients undergoing high-volume CO₂ distal “runoff” studies.

CO₂ for TIPS

For TIPS procedures, CO₂ has proven to be more helpful than iodinated contrast [6,7]. We prefer using a fine-needle system, placing the 21-gauge needle into the hepatic parenchyma in the area where the portal vein should be located. With the use of a Tuohy-Borst fitting and a 20 cc syringe, 20 cc of CO₂ are forcefully injected through the 21-gauge needle into the hepatic sinusoids with immediate opacification of the portal system. Multiple injections in several projections will verify the relative position of the needle to the portal target. After the needle enters the suspected target and the .018" guidewire is advanced, the Tuohy-Borst fitting is tightened and multiple injections of 20 cc of CO₂ are made between the guidewire and the needle in various projections to ascertain the exact entry point of the needle. If the guidewire is in an unwanted target (peritoneal cavity, bile duct, or hepatic artery), the fine-needle is simply removed and repeat passes are made. After a safe portal entry site is verified, the tract between the portal vein and the hepatic vein can be tested with the Tuohy-Borst fitting by retracting the needle slowly and first injecting CO₂, and “double-checking” by injecting iodinated contrast using a 1 cc syringe. After the tract is dilated, injection of CO₂ between the guidewire and the stent catheter ascertains the location of the stent before it is deployed. Previously we, and others (Rees) [6,7], have made wedged hepatic venous injections to obtain a portogram; however, we have seen three cases where extravasation into the peritoneal cavity occurred. Semba, et al [48] reports one fatality and Rees [6] reports a complication with the wedged position. We have injected CO₂ through a fine needle into the liver parenchyma in a large number of cases without complications.

Interventional Procedures

There are two major advantages of CO₂ for interventional procedures as opposed to iodinated contrast agents [3,49]. Since we believe the CO₂ is eliminated by the lungs in a single pass, unlimited quantities of CO₂ can be injected. This is particularly helpful during long, complex interventional cases where a large amount of contrast agent may be required. In canines, 100 cc of CO₂ can be injected every minute for hours without adverse effects [24]. In patients, if several minutes are allowed between injections, there is no maximum total dose of CO₂.

The second important property of CO₂ is its low viscosity which permits injections between the guidewire and the catheter or between the needle and the guidewire. This is extremely helpful during the majority of complex procedures because the guidewire never has to be removed. For example, in renal PTA, CO₂ will verify the intraluminal location of the guidewire after the stenosis has been crossed. Also, CO₂ (10-30 cc) can be injected between the PTA catheter and the guidewire, and the CO₂ will reflux into the aorta to verify the correct location before the balloon is inflated. Iodinated contrast can be injected with a tuberculin syringe. However, because of the low volume, only the distal branches will be seen. After the stenosis is dilated, the PTA catheter can be retracted to the origin of the renal artery and CO₂ can be injected with the wire remaining across the lesion. This ability to inject between the guidewire and the catheter has been extremely helpful for the placement of renal stents. Again, as with renal angioplasty, multiple injections can be made to accurately place the renal stent. CO₂ is particularly helpful in distal
extremity angioplasty, since with below the trifurcation angioplasties and "over-the-hill" angioplasties CO₂ can be injected between the guidewire and the catheter, producing excellent images without using an excessive amount of contrast or requiring additional catheter or sheath placement, etc.

High pressure is required to inject the CO₂ between the guidewire and the catheter. If a 1 cc syringe is used, the CO₂ will simply compress. At least a 20 cc syringe is required. Also because CO₂ compresses, it may not exit from the catheter for 5-10 seconds. After the first injection, subsequent injections are much easier to deliver with minimal delay.

CO₂ has been extremely helpful for embolization, since large volumes can be injected through microcatheters, and we have also noted that more tumor vessels fill with CO₂ than with iodinated contrast; thus, making the embolization more complete with CO₂ imaging.

More recently, CO₂ has been used for venography [26,50,51]. It is useful in the venous system to place Hickman catheters, translumbar Hickman catheters, IVC filters, balloon dilatation, and stent placement of the subclavian vein [44].

For venous injections, CO₂ fills collaterals better, is not diluted by other collaterals and flows much faster than iodinated contrast. We use CO₂ very cautiously in dialysis fistula, since Ehrman [39] reported several cases of seizures, etc., when either CO₂ or air contaminated gas apparently refluxed into the cerebral circulation. If CO₂ is delivered nonexplosively in minimal volumes, we feel it is safe to use on the venous side of the dialysis grafts.

We also use CO₂ for nonvascular procedures (biliary, urinary, abscess, fistula). For nephrostomy we inject 10-20 cc of CO₂ into the renal pelvis with a 25-gauge needle [52]. With the patient in the prone position the CO₂ "floats" into the posterior calyx, which creates an easy target. We also use a blunt puncture needle since it pushes arteries aside and is less likely to cause bleeding.

Contraindications

Because of the possibility of neurotoxicity [28], the cerebral arterial circulation should never be exposed to CO₂.

Relative Contraindications

CO₂ should not be used in the venous circulation or arterially if a large AV fistula is suspected in the presence of a right-to-left intracardiac shunt. If this exists and a CO₂ venous examination is absolutely necessary, small amounts of CO₂ may be safe if the patient is placed in the left lateral decubitus position allowing CO₂ to trap and dissolve in the right atrium.

CO₂ should not be used with nitrous oxide anesthesia [53]. Nitrous oxide which is saturated in the soft tissues will diffuse into the CO₂ bubble, increase its volume, and dilute the CO₂. Therefore, the potential exists for routine safe volumes to be more prone to cause a vapor lock phenomena.

We, and others [6], have used CO₂ cautiously in patients with severe chronic obstructive pulmonary disease (COPD). However, we recommend decreasing the volume per injection and increasing the interval between injections. We have obtained blood samples in at least ten patients with COPD after multiple injections (total volume 3-500 cc), with only one patient demonstrating a slight decrease in pH. In these patients we normally inject less than 70 cc every 4-5 minutes, which is minimal when compared to the normal metabolic release of 200 cc per minute in a resting adult. With exercise, the amount can increase.
4-5 times and is rapidly eliminated with increased ventilation. PCO₂ remains unchanged. CO₂ should not be a problem unless a patient has severe COPD with increased PCO₂ and cannot respond by increased ventilation.

Summary

Presently, the dedicated delivery system delivers CO₂ very safely without chance of air contamination, excessive volumes, explosive delivery, etc. We would strongly recommend not using hand injection directly from the CO₂ cylinder since air contamination can readily occur and explosive delivery is more difficult to eliminate. Imaging has improved and will improve considerably more when the manufacturers optimize imaging of the low density contrast. The safety and advantages afforded by its buoyancy, low viscosity, and low cost have provided advantages for not only patients with renal failure and allergy, but for routine diagnostic and interventional procedures.

REFERENCES

11. Turner A, Meyers HI, Jacobson G, Lo W: Carbon dioxide cineangiocardioigraphy in the diagnosis of
pericardial disease. AJR 1966;97:342-349.

44. Kerns SR, Hawkins IF Jr: Carbon dioxide digital subtraction angiography: Expanding applications

STEP 1: Flush bag with CO₂ 3-4 times. Connect to “delivery systems” distal side point. **Never connect the CO₂ cylinder to the delivery system.** Never add 3-way stopcocks, extra connecting tubes etc. since air can be aspirated through the non air tight fitting.

STEP 2: Open stopcock.

STEP 3: Fill and empty syringe and delivery system 4-5 times before connecting to angio catheter.

STEP 4: Flush purge syringe 3-4 times by aspirating CO₂ and emptying via 3-way stopcock.

STEP 5: Connect 3 way stopcock to catheter.

STEP 6: Clear blood from catheter with standard 3-way stopcock.

STEP 7: Forcefully inject 3 cc CO₂ to purge catheter of saline (one-way check valve will prevent reflux of blood into catheter).

STEP 8: Wait approximately 30 seconds.

STEP 9: Injected bolus with delivery syringe injecting at desired rate (non-explosively).

STEP 10: Refill syringe and repeat injections at will. **Always check if bag-port fitting is firmly attached.** (No need to repurge catheter unless over 3-5 has elapsed between injections.)